Outlier Detection with Uncertain Data
نویسندگان
چکیده
In recent years, many new techniques have been developed for mining and managing uncertain data. This is because of the new ways of collecting data which has resulted in enormous amounts of inconsistent or missing data. Such data is often remodeled in the form of uncertain data. In this paper, we will examine the problem of outlier detection with uncertain data sets. The outlier detection problem is particularly challenging for the uncertain case, because the outlier-like behavior of a data point may be a result of the uncertainty added to the data point. Furthermore, the uncertainty added to the other data points may skew the overall data distribution in such a way that true outliers may be masked. Therefore, it is critical to be able to remove the effects of the uncertainty added both at the aggregate level as well as at the level of individual data points. In this paper, we will examine a density based approach to outlier detection, and show how to use it to remove the uncertainty from the underlying data. We present experimental results illustrating the effectiveness of the method.
منابع مشابه
A Study on Distance-based Outlier Detection on Uncertain Data
Uncertain data management, querying and mining have become important because the majority of real world data is accompanied with uncertainty these days. Uncertainty in data is often caused by the deficiency in underlying data collecting equipments or sometimes manually introduced to preserve data privacy. The uncertainty information in the data is useful and can be used to improve the quality o...
متن کاملAccelerating Outlier Detection with Uncertain Data Using Graphics Processors
Outlier detection (also known as anomaly detection) is a common data mining task in which data points that lie outside expected patterns in a given dataset are identified. This is useful in areas such as fault detection, intrusion detection and in pre-processing before further analysis. There are many approaches already in use for outlier detection, typically adapting other existing data mining...
متن کاملFast Top-k Distance-Based Outlier Detection on Uncertain Data
This paper studies the problem of top-k distance-based outlier detection on uncertain data. In this work, an uncertain object is modelled by a probability density function of a Gaussian distribution. We start with the Naive approach. We then introduce a populated-cell list (PC-list), a sorted list of non-empty cells of a grid (grid is used to index our data). Using PC-list, our top-k outlier de...
متن کاملDistance-Based Outlier Detection on Uncertain Data of Gaussian Distribution
Managing and mining uncertain data is becoming important with the increase in the use of devices responsible for generating uncertain data, for example sensors, RFIDs, etc. In this paper, we extend the notion of distance-based outliers for uncertain data. To the best of our knowledge, this is the first work on distance-based outlier detection on uncertain data of Gaussian distribution. Since th...
متن کاملON APPLICATIONS OF DENSITY TRANSFORMS FOR UNCERTAIN DATA MINING Applications to Classification and Outlier Detection
In this chapter, we will examine a general density-based approach for handling uncertain data. The broad idea is that implicit information about the errors can be indirectly incorporated into the density estimate. We discuss methods for constructing error-adjusted densities of data sets, and using these densities as intermediate representations in order to perform more accurate mining. We discu...
متن کامل